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Abstract
Accurate inference of orthologous genes is a pre-requisite for most comparative genomics studies, and is also
important for functional annotation of new genomes. Identification of orthologous gene sets typically involves phylo-
genetic tree analysis, heuristic algorithms based on sequence conservation, synteny analysis, or some combination
of these approaches. The most direct tree-based methods typically rely on the comparison of an individual gene
tree with a species tree.Once the two trees are accurately constructed, orthologs are straightforwardly identified
by the definition of orthology as those homologs that are related by speciation, rather than gene duplication,
at their most recent point of origin. Although ideal for the purpose of orthology identification in principle, phylo-
genetic trees are computationally expensive to construct for large numbers of genes and genomes, and they often
contain errors, especially at large evolutionary distances. Moreover, in many organisms, in particular prokaryotes
and viruses, evolution does not appear to have followed a simple ‘tree-like’ mode, which makes conventional tree
reconciliation inapplicable. Other, heuristic methods identify probable orthologs as the closest homologous pairs
or groups of genes in a set of organisms.These approaches are faster and easier to automate than tree-based meth-
ods, with efficient implementations provided by graph-theoretical algorithms enabling comparisons of thousands
of genomes. Comparisons of these two approaches show that, despite conceptual differences, they produce simi-
lar sets of orthologs, especially at short evolutionary distances. Synteny also can aid in identification of orthologs.
Often, tree-based, sequence similarity- and synteny-based approaches can be combined into flexible hybrid
methods.
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INTRODUCTION
Identification of orthologous genes is a foundation

of almost every comparative-genomic study. Ortho-

logous gene sets are used to obtain information about

evolutionary conservation and variability of molecu-

lar sequences, the tempo and mode of gene gain

and loss, and constitute ‘parts lists’ for system-wide

biological modeling. In comparative genomic stu-

dies, millions of genes in the now numerous

sequenced genomes [1] cannot be considered com-

pletely independent of one another. Instead, sets of

(putative) orthologous genes—in essence, instances

of ‘the same gene’ in different species—are used to

explore evolutionary histories and to utilize func-

tional information about well-studied genes for an-

notation of their uncharacterized homologs [2–5].

Orthology, a term coined by Walter Fitch in

1970, refers to a specific type of relationship between

homologous characters that arose by speciation at

their most recent point of origin [6]. Here we restrict

our focus to consider only genes, although the con-

cept of orthology applies to other types of characters
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as well, such as chromosomal segments [7]. The

problem of identification of orthologous genes is to

distinguish between genes that are orthologous

versus those that share another kind of homologous

relationship such as paralogy [8]. The most common

types of homologous relationships between genes

are defined in Box 1. The events of the past, in

particular speciation and gene duplication, cannot

be observed directly but can be inferred, using algo-

rithmic and statistical methods, from the genomic

data available today. Thus, identification of orthol-

ogy, even when highly confident, is technically

always an inference.

Orthologs tend to retain similar molecular and

biological functions [9]. In contrast, paralogs tend

to diverge over time to perform different functions

via subfunctionalization or neofunctionalization

routes [10, 11]. However, functional conservation

among orthologs should be inferred with caution

because some orthologous genes can diverge

functionally even among closely related organisms

[12]. The reverse is also true: isofunctional genes

are not necessarily related by orthology [13, 14].

Orthology has been originally defined for pairwise

relationships between characters [6, 15], but in prac-

tice it is sets of orthologs from multiple species rather

than individual orthologous pairs that are most often

used to study the evolution of gene families and the

organisms they reside in. Genes have different types

of homologous relationships to different other

genes—in a textbook example, human myoglobin

is orthologous to mouse myoglobin, but paralogous

to both mouse and human hemoglobins. More gen-

erally, as shown for the example in Figure 1, gene 1a
in species C and gene 1 in A are orthologous because

they are related by speciation at their point of origin

in the last common ancestor at the base of the tree,

and gene 1 in species A and gene 1b in C are simi-

larly orthologous, whereas genes 1a and 1b in C are

not orthologous, but rather paralogous as they are

related at their most recent point of origin by a du-

plication event. Large-scale demarcation of ortholo-

gous and paralogous genes using pre-defined sets

of probable orthologs is important for pinpointing

key events in evolution and the associated shifts

in molecular functions. For example, this approach

has been employed to delineate the set of ancestral

duplications in eukaryotes which showed significant

excess of duplications among certain functional

classes of genes [16].

Identification of genome-wide sets of orthologous

and paralogous genes for distantly related organisms

is a daunting task, because of the complexity of the

routes of gene evolution that often involves horizon-

tal gene transfer, lineage-specific gene loss, gene

Box1: Relationships between genes
� Homology: genes that share a common origin.
� Analogy: non-homologous genes that perform the same func-

tion as a result of convergent evolution.
� Orthology: genes arising by speciation at their most recent

point of origin.
� Paralogy: genes arising by duplication at their most recent point

of origin.
� Xenology: genes arising by HGT from another organism.
� In-/Out-paralogy: paralogous genes arising from lineage-specific

duplication(s) after/before a given speciation event.
� Co-orthology: in-paralogous genes that are collectively, but not

individually, orthologous to genes in other lineages (due to their
common origin by speciation).

� Orthologous group: collection of all descendants of an ancestral
gene that diverged from (after) a given speciation event.

l

ll

in-paralogous
orthologous

Figure 1: Orthology, co-orthology and paralogy relationships in the evolution of four genes that arose from a
single common ancestor.
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fusion and fission, and other events that complicate

evolutionary scenarios. At a time when the number

of available complete genomes grows rapidly, it is

also an important and increasingly urgent problem

as reflected in the recent launch of the ‘Quest

for orthologs’ initiative aiming at comparison and

benchmarking of various existing methods for

orthology detection [17]. In this review we touch

only briefly on developing proper definitions of

orthology, paralogy and other concepts and terms

relevant to the evolutionary history of homologous

genes, as well as applications of orthology detection

methods, in order to concentrate on the computa-

tional approaches for detection of orthologous genes

in genome sequences.

METHODS FOR IDENTIFICATION
OF ORTHOLOGY
Phylogenetic tree-based approaches
Tree-based methods use an explicit model of the

evolutionary history of the genes in question, in

the form of a gene family tree, to infer orthologs.

The most direct approaches compare this informa-

tion with a second explicit evolutionary model of the

organisms the genes reside in, i.e. a species tree, and

use the procedure known as tree reconciliation or

tree mapping [18, 19] to compare these two

models to identify orthologs (Figure 2). The major

assumption underlying this approach is that, by

virtue of parsimony, the smallest number of evolu-

tionary events (such as gene duplication or gene loss)

is likely to reflect the actual course of evolution.

Once the gene tree is constructed, orthologs and

paralogs can be assigned by noting that paralogs

group more closely together with members of the

same species (Figure 2b), whereas orthologs group

with members from other species (Figure 2c). A pre-

cise mapping function and an exact algorithm to sort

duplication and speciation events have been de-

veloped [20]. This method formalizes the following

intuition: if the offspring of a node in a gene tree is

distributed among a given set of species, and the

offspring of its direct descendant node is distributed

among the same set of species (or a subset thereof),

then there were no speciation events between the

two nodes, so the former node is a duplication.

The tree construction step usually involves either

distance-based (neighbor-joining and UPGMA)

or character-based [maximum parsimony, various
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Figure 2: The reconciliation of the species tree (a) with an instance of a gene tree (b^d) allows for inference as to
when evolutionary events such as speciation (T-branch), gene duplication (star-branch), or gene loss (X) occurred.
(b) Gene tree with recent duplication, and evolutionary relationships shown for the genes in the shaded area.
Because all three genes diverged from a single common ancestor, they would form a single orthologous group. (c)
Gene tree with duplication preceding speciation event and evolutionary relationships shown for the genes in the
shaded area. These four genes form two separate orthologous groups, corresponding to the two ancestral genes
leading to each distinct gene lineage (Human1and Mouse1, and Human2 and Mouse2). (d) Gene tree with duplication
prior to speciation, followed by differential gene loss of Fly1 & Mouse2, where again all of the descendants of each
of the two ancestral genes form an orthologous group.
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kinds of maximum likelihood (ML), or Bayesian]

algorithms. The distance matrix-based methods are

much faster but limited in their applicability—in par-

ticular, they are less accurate when dealing with large

distances or lineages with different rates of diver-

gence [10]. Approximations of the ML approach

are becoming available that help offset the otherwise

high computational cost [21–24]. A major advantage

of the tree-based approach to computational identi-

fication of orthologs is that it can use the information

contained in a multiple sequence alignment, and can

therefore model the evolution of the entire group of

genes at once (in, for instance, a ML framework).

Thus, the tree approaches are less prone to error

than the pairwise heuristic approaches in situations

such as differential gene loss [25, 26] (shown in

Figure 2d).

In principle, explicit phylogenetic analysis is the

most appropriate method for disentangling ortholo-

gous and paralogous genes, but there are several

practical disadvantages to using trees. Trees are

computationally expensive to produce when the

number of leaves (organisms and genes) is large,

and even though these can be produced and stored

in large-scale databases with uses extending beyond

orthology identification [27], any phylogenetic infer-

ence is also sensitive to noise and biases in the data

[28, 29]. Probably the best-known artifacts are long-

and short-branch attraction at large or small evolu-

tionary distances, respectively [30]. Furthermore, tree

construction is sensitive to the accuracy of multiple

sequence alignment [23, 28, 31], which cannot be

guaranteed when automated methods are used, es-

pecially when dealing with multi-domain proteins, a

larger number of sequences and at larger evolution-

ary distances [32, 33]. Also, many tree construction

methods treat as missing data columns in the align-

ment of the gene sequences that contain gaps. This

approach reduces (in some cases drastically) the

amount of information with which to create the

model of evolution represented in the tree, and

may introduce bias in this treatment of insertion

and deletion events that have occurred during the

evolution of a group of genes [32]. Even prior to

constructing the multiple sequence alignment, the

selection of homologs to align and build trees for

must be performed. It is generally both impractical

and undesirable to use all available sequences in a

gene family for phylogenetic tree construction, not

only because there are too many to apply the most

reliable phylogenetic methods but also because

different taxa are always unevenly represented. Any

selection procedure has the potential to introduce

biases which for large families may be substantial

and exacerbate the technical problems of alignment

and tree construction. Taken together, these difficul-

ties preclude the application of phylogenetic analysis

for the entire set of more than 1000 available

complete genomes of diverse prokaryotes and eu-

karyotes [1].

A more fundamental challenge to the tree-based

orthology analysis is presented by the fact that out-

side of multicellular eukaryotes, and especially in

prokaryotes and viruses, evolution does not appear

to have followed a ‘tree-like’ mode [34–38]. On

the contrary, far from being a minor nuisance com-

plicating the central trend of evolution, horizontal

gene transfer (HGT) is a major component of the

evolution of these organisms [39–45], so that their

evolutionary history has to be represented by graphs

that include not only vertical but also horizontal

branches; algorithms for mapping of speciation and

gene duplication events in such complex graphs are

still unavailable.

A variety of computational platforms for orthol-

ogy and paralogy detection and analysis have been

developed to study the groups of organisms and gene

families that have not been subject to substantial

HGT, particularly those of animals, plants and

fungi (these methods are also applied to prokaryotes

and viruses, but the impact of HGT in these lineages

on orthology assignment have not yet received

sufficient attention). Some of the most advanced

and widely used procedures for automated whole-

genome phylogenomic identification of orthology

are listed in Table 1, with the discussion of the meth-

ods that also use synteny information deferred until

later. Many other methods exist, particularly those

that rely on specialized databases of pre-computed

orthologs for individual organisms or lineages, such

as the Yeast Gene Order Browser [62], which further

lists paralogs related by whole-genome duplication

events (‘ohnologs’). Many methods attempt to

reduce the dependence on a single tree topology in

various ways, whereas others abandon the strict reli-

ance on trees entirely and instead use alternate, but

similar, measures of sequence relatedness. Some

methods do not attempt to provide a single predic-

tion of orthologs or orthologous groups, but rather

use multiple overlapping definitions of orthology.

Probably the largest phylogenetic repository is

PhylomeDB, which provides alignments, trees and
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orthology predictions for every protein in each

genome in its database (a ‘phylome’), with its most

recent release containing phylomes from 17 diverse

organisms. MetaPhOrs, developed by the same au-

thors, is probably the largest repository of phylogen-

etic orthology predictions.

Heuristic best-match methods
While phylogenetic tree analysis relies on an explicit

model of the evolution of genes and species, an al-

ternative class of approaches instead relies on the as-

sumption that the sequences of orthologous genes

(proteins) are more similar to each other than they

are to any other genes from the compared organisms

(Figure 3 and [63]; see below for the special case of

in-paralogs). In practice, the use of symmetric

best-match relationships [51] (often called BBHs,

for bidirectional best hits [64]), is the most

common method employed to infer probable ortho-

logs in comparative genomic studies. The BBHs can

be easily determined from the ranking of homologs

obtained in a pairwise sequence similarity search, by-

passing the need for reconciliation of phylogenetic

trees. Many best-match algorithms go further, in a

process sometimes called pair-linking, to group to-

gether genes from multiple genomes that are ortho-

logous or co-orthologous to one another, so that

these groups jointly represent all of the descendants

of a common ancestral gene within the studied set of

organisms [8]. Linking pairs of BBHs from multiple

genomes has a property of self-verification, as

their consistency would be highly unlikely due to

chance, especially between phylogenetically distant

lineages [51].

Table 1: Automated methods for phylogenomic prediction of orthology

Method Description Applied to

Orthostrapper/hierarchical
grouping of orthologous
and paralogous sequences
(HOPS)

Uses bootstrap trees to calculate orthology support
values for pairs of sequences in a multiple sequence
alignment; graphical visualization by OrthoGUI [46].

Worms and mammals [47], and later to the
domains of eukaryotes that appear in Pfam [48].

Resampled inference of
orthologs (RIO)

Uses speciation duplication inference (SDI) algorithm
[20] of fully-resolved bootstrap-resampled trees.

Pfam alignments of domains in plants and
worms [49].

Re¤ conciliateur d’Arbres
Phyloge¤ ne¤ tiques (RAP)

Infers speciation and duplication events, and then
identifies probable orthologs and paralogs in gene
families with a given tree topology.

Databases of orthologous protein families
HOVERGEN (dedicated to vertebrates),
HOBACGEN (prokaryotes) and HOGENOM
(organisms with completely sequenced
genomes) [50].

COrrelation
COefficient-based
Clustering (COCO-CL)

Uses a measure of sequence distance between
evolutionary histories of homologous genes instead
of a species tree to construct a hierarchy of clusters.

Various protein classification databases (COGs [51],
KOGs [52], OrthoMCL [53] and raw BLAST
searches [54]).

Levels of Orthology From
Trees (LOFT)

Constructs several hierarchical groupings that
highlight different levels of relatedness between
orthologs and paralogs.

Benchmarked against COGs, reconciliation with
trusted species trees, and gene order
conservation [55].

TreeFam Uses several phylogenetic approaches to construct
sets of orthologs from a curated resource of
phylogenetic trees (extended with additional
automatically generated trees).

Latest published release contains 25 fully
sequenced genomes of animals plus four plant
and fungal outgroup species [56].

Greenphyl Uses semi-automatic gene family clustering to
construct input dataset from raw data (all gene
sequences in full genomes) prior to tree construc-
tion and an optimized stand-alone phylogenomic
pipeline.

Complete plant genomes [57].

PhylomeDB Uses a high-quality phylogenetic pipeline that includes
evolutionary model testing and alignment trimming
phases.

Latest published release contains 17 phylomes from
such diverse organisms as human, yeast and even
bacteria [58].

Berkeley PhyloFacts
Orthology Group (PHOG)

Uses pre-computed trees, but allows targeting of
different taxonomic distances and precision levels via
user-set tree-distance thresholds in a prediction
webserver.

Human, mouse, zebrafish and fruit fly sequences
fromTreeFam-A database [59].

MetaPhylogenyBased
Orthologs (MetaPhOrs)

Applies a species overlap algorithm [60] to integrate
information from multiple phylogenetic trees from
a wide variety of sources.

Hundreds of genomes from eukaryotes and
prokaryotes, although the authors note greatly
reduced performance in the latter [61].
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Pairwise BBH relationships are usually deter-

mined by taking the top-ranking matches found

by BLAST [65], for which highly efficient imple-

mentations are available (such as NCBI [66] and

WU-BLAST [67]), or by other sequence similarity

measures such as the similarity scores computed

from Smith-Waterman alignments [68] or ML dis-

tance estimates from significant scoring pair-wise

alignments (reciprocal smallest distance, RSD

[69]). The methods for clustering these pairwise re-

lationships into orthologous groups vary, with the

most widely used approach involving deterministic

single-linkage clustering procedures, where any two

clusters sharing a common BBH are merged until

convergence [51].

Heuristic algorithms present a number of advan-

tages over tree-based approaches [8, 70]. They are

typically much faster, easier to automate, and a

number of efficient implementations have been de-

veloped that can handle very large numbers of gen-

omes. Given that such algorithms do not rely on

either species trees or gene trees, they avoid the arti-

facts associated with constructing and using phyloge-

nies (see above). Moreover, because these heuristic

methods rely on the ranking of sequence similarity

scores rather than on multiple alignments, they also

avoid many of the pitfalls inherent to multiple se-

quence alignments and choosing lists of homologs

that adversely affect the accuracy of phylogenetic

tree analysis [32, 33].

Heuristic approaches to orthology identification

are vulnerable to their own types of errors. In par-

ticular, pairwise associations typically fail to detect

differential gene loss [71, 72]—for example, in the

scenario illustrated in Figure 2d, the BBH assump-

tion is false because even though Mouse1 and Fly2

are each others’ highest-ranking matches in that pair

of genomes, this is due to the differential loss of Fly1

and Mouse2 in their respective lineages rather than

to a genuine orthologous relationship. In a case like

this, a tree-based approach can pinpoint the

lineage-specific gene loss by noting that a genome

from another lineage contains both paralogs. In add-

ition, the method of constructing orthologous

groups from pairwise BBHs may be overly inclusive

and create mixed groups that do not accurately rep-

resent the evolutionary history of the collection as a

whole, especially in large, complicated families

where an explicit model of the evolution undergone

by these genes can help to identify different relation-

ships. An additional source of erroneous orthology

assignment is domain recombination. Figure 3c illus-

trates an extreme scenario where two groups of

orthologs that each contain a distinct conserved

domain but that do not share any regions of hom-

ology with one another, nevertheless can be merged

due to other genes that contain both domains.

Because lineage-specific gene loss and variable multi-

domain architectures, even among supposedly ortho-

logous proteins, are particularly common in

eukaryotes [73–75], several solutions have been

devised to deal with these issues (discussed below).

It has also been suggested that the BLAST score

might not be a good indicator of the actual evolu-

tionary relationship between a pair of homologs, as

illustrated for select cases where the top BLAST

SymBet

Species

Sets of in-paralogs

Genes / Domains

A

B

C

(a)

(c)(b)

Figure 3: Grouping of genes in different species that
are each others’ BBHs into sets of orthologs and
co-orthologs. (a) Graph representation of the evolu-
tionary scenario shown in Figure 1, with genes repre-
sented as vertexes and BBHs as edges. (b) A larger,
completely connected orthologous group of six genes
from five species. (c) An even larger group that contains
some members that are not orthologs, in this case
due to domain recombination, where the top members
have one domain and the bottom members have an-
other, non-homologous domain, but they were merged
into the same group due to the middle members con-
taining both domains (thus bridging the otherwise dis-
connected components in the BBH graph). Alternative
scenarios of improper merging can involve differential
gene loss or large, complex mixtures of in- and
out-paralogs, but in all three cases are due to the
pair-wise procedure used to add members to groups,
without considering the long-range relationships to the
other members in the group.
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match is not the same as the nearest tree-neighbor,

i.e. not a bona fide ortholog [76]. However, these

examples notwithstanding, the BLAST score ranking

appears to be a good statistical predictor of orthology

at the genome scale, especially when BBHs rather

than one-way best matches are used, and even

more so when the BBHs share consistency with add-

itional genomes (ARM, unpublished observations).

Indeed benchmarking of algorithms for ortholog

definition suggests good agreement between phylo-

genetic tree-based and heuristic best-match

approaches (see below).

At this time, all their limitations notwithstanding,

heuristic best-match approaches have managed to

produce extensive collections of (putative) ortholo-

gous groups covering large numbers of species.

The first to succeed at this task was the clusters

of orthologous groups (COGs) method [51] that

employed the prototype BBH pair-linking

algorithm involving three-way symmetric best

matches, merged with single-linkage clustering.

Subsequent expansions, variations and derivatives of

this method, as well as several other popular heuristic

methods, are described in Table 2, again with the

discussion of those that also use synteny information

deferred until later.

The latest heuristic algorithms are gradually over-

coming many of their hindrances. For instance, the

use of domains rather than full genes avoids the

domain recombination problem by more precisely

defining the region of a gene that is orthologous

[83, 84, 97], an approach that could benefit

tree-based methods as well because multidomain

architecture also complicates the choice of homo-

logs and construction of a multiple sequence align-

ment. However, more algorithmic development is

required to avoid improperly merging groups due

to complex mixtures of differently-related genes,

Table 2: Automated methods for heuristic best-match prediction of orthology

Method Description Applied to

Clusters of orthologous
groups (COGs),
variants and
derivatives

Identifies three-way BBHs between orthologs or sets of
co-orthologs in three different species, and these
groups expanded (merging triangles whenever they
share a common side) until saturation, followed by
manual splitting of large groups improperly joined by
multidomain proteins or complex mixtures of in- and
out-paralogs [51]; later developments focused on
expanding the resource [77, 52], adding automation
[78, 79], and more efficient handling of large numbers
of genomes [80].

Initially the first seven completely-sequenced
genomes available [51], with subsequent updates
[77], expansions (including the automated
eggNOG [78, 79] currently containing 630
complete genomes), and several lineage-specific
derivatives including: eukaryotic KOGs [52],
COGs for individual phyla [81, 82], archaeal
arCOGs [83], dsDNA phage POGs [84], large
nucleo-cytoplasmic DNA virus NCVOGs [85]
and n-way BBHs in herpes viruses [86].

OrthoMCL Forms groups of orthologs and co-orthologs using a
Markov clustering process involving iterative simulations
of stochastic (randomized) flow on the edges of a BBH
graph, with clusters of desired tightness identified
depending on a given ‘inflation’ parameter determined
by trial and error [53, 87].

The first fully automated heuristic algorithm
applied across multiple eukaryotic taxa [53]; the
current OrthoMCL-DB [88] version 4 contains
138 genomes of mostly eukaryotes, but also
some bacteria and archaea.

InParanoid/multiparanoid Detects BBHs between a pair of organisms and then
applies additional statistical rules to add in-paralogs
arising from duplication after speciation [89, 90];
multiparanoid later developed to combine pairwise
predictions into multi-species groups [91].

Latest 7.0 release covers 99 eukaryotic species plus
Escherichia coli outgroup [92].

OMA Various improvements upon traditional BBH strategies
such as RSD evolutionary distances and accounting
for differential gene loss and gene fusion^ fission events
[93^95].

One of the largest projects of its kind with 1000
genomes of both prokaryotic and eukaryotic
species.

RoundUp Uses ML-based evolutionary distances (RSD [69]) in
pair-wise comparisons of hundreds of genomes [96].

Current version includes >900 genomes of both
prokaryotic and eukaryotic species.

Domain-based detection
of orthologs (DODO)

Efficient BBH approach based on domain architectures
[97].

Benchmarked against InParanoid’s 100 genomes.

OrthoInspector First creates groups of in-paralogs and then examines
1-to-1, 1-to-many, or many-to-many reciprocal matches
between pairs of groups, with additional detection of
contradicting information between the two groups
(such as an incomplete proteome) [98].

Fifty-nine eukaryotic organisms with
approximately complete proteomes.
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such as in cases of differential gene loss (Figure 2d)

[25, 26].

Synteny
The conservation of local gene order (synteny) is a

consequence of common ancestry that is most often

observed among closely-related organisms. About

half of all orthologous genes in human and fish

belong to conserved synteny blocks [99]. In verte-

brates, synteny appears to be (nearly) evolutionarily

neutral with a few exceptions [100, 101], although

rates of genomic rearrangement are highly variable in

different lineages [102]. Homologs surrounded by

the sets of orthologous genes in these organisms are

thus very likely to be orthologous themselves [103].

However, at least in animals, the rate of loss of syn-

tenic neighborhoods is roughly proportional to the

rate of amino acid sequence divergence in orthologs,

and synteny becomes undetectable when the average

protein identity is <50% [104, 105]. Prokaryotes

show a still higher rate of synteny loss [106–109],

which may occur even at >90% identity [100, 101]

except in a relatively small fraction of conserved

neighborhoods where selection pressure appears to

act to retain gene order [110, 111].

In itself, synteny is not a powerful approach for

orthology identification because gene orders gener-

ally evolve much faster than gene repertoires or pro-

tein sequences. Nevertheless, at close evolutionary

distances, synteny can be used to support the confi-

dence in orthology predictions, and even help to

distinguish between orthology that has been main-

tained vertically throughout a gene’s evolutionary

history and xenology, resulting from HGT

[112–115]. Synteny information has been combined

with a phylogenetic tree approach in OrthoParaMap

[116] and PhyOP [117] to measure orthology be-

tween a pair of closely related species, and in

SYNERGY [118] to use this information when avail-

able among a large group of species. Synteny has also

been combined with a BBH pair-linking approach in

the alignable tight genomic clusters (ATGCs) across

groups of closely-related prokaryotic genomes [119],

and in MSOAR (subsequently extended to

MultiMSOAR), a high-throughput ortholog assign-

ment system based on genome rearrangement that has

been applied to mammals [120, 121].

Hybrid and other approaches
Phylogenetic and heuristic approaches can be com-

bined with each other or with synteny information,

to yield hybrid approaches that attempt to overcome

the shortcomings of using either method alone. For

example, hybrid approaches can offset the computa-

tional expense of a phylogenetic approach, or reduce

the vulnerability of heuristic algorithms to evolution-

ary events such as differential gene loss. Ortholuge

uses a phylogenetic approach to refine clusters made

by a heuristic algorithm, noting cases where relative

gene divergence is atypical between two compared

species and an outgroup species and therefore

suggests paralogy rather than orthology [122].

EnsemblCompara further integrates the tree-

reconciliation and BBH pair-linking approaches by

starting with gene trees made from the initial clusters

produced by heuristic algorithms, and reconciling

these with the species tree of vertebrates [27].

HomoloGene is another hybrid approach that uses

pairwise gene comparisons but follows a guide tree

to compare more closely related organisms first, and

also adds gene neighborhood conservation [1]. Other

approaches also exist that do not fall into any of the

above categories, including a method that uses topo-

logical distance in a species tree (which it does not

reconcile with a gene tree) as a factor in a linkage

equation to find dense clusters in a multipartite graph

(whose edges are not restricted to BBHs) [123] and a

machine-learning predictor of orthology using a set

of graph features that, in addition to sequence simi-

larity and synteny, also includes gene co-expression

and protein interaction networks [124].

COMPARISONSOF ORTHOLOGY
DETECTIONMETHODS
Several direct comparisons of computational meth-

ods to identify pairs of orthologs and orthologous

groups have provided insight into which approaches

work best in various contexts [3, 70, 125–127]. As

there is no widely accepted ‘gold-standard’ set of

orthologs, one of the authors of the OrthoMCL

method developed a statistical approach that com-

pared several methods of ortholog identification

against one another [127]. Using a Latent Class

Analysis technique [128], the overlap between sev-

eral sets of eukaryotic orthologous groups made by

different programs was analyzed in terms of sensitiv-

ity and specificity. By these measures, no single

method achieved optimal performance; each

method reaches a different trade-off between the

two criteria. For instance, many BBH pair-linking

methods have been found to reach high sensitivity
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at the cost of specificity (larger groups containing

unique and by inference dubious predictions not

found by other methods, in particular when the ar-

bitrary sequence similarity cutoffs were relaxed). The

tree-based methods displayed the opposite trend

(larger number of smaller groups with the predictions

also found by most of the other methods in the

study). The heuristic algorithms InParanoid [92]

and OrthoMCL [88] exhibited the most even bal-

ance between the two (medium-sized groups).

Without a standard of truth, it is difficult to

ascertain whether a given ortholog prediction is

a true positive or a false positive, or whether a

missed ortholog prediction is a false negative or a

true negative [128, 129]. In the comparison of the

methods against one another, differences are ex-

pected because genes can have different types of

homologous relationships to different other genes

(Figure 1), and thus methods that choose different

speciation events to define co-orthology will pro-

duce different results. For example, a speciation

event chosen prior to a whole-genome duplication

event [130, 131] in one lineage will result in each of

the duplicated pairs being grouped together as

in-paralogs/co-orthologs that share a single

common ancestor, as shown in Figures 1 and 2b.

By contrast, if the duplication occurs prior to the

speciation as in Figure 2c, then each pair will be

separated into distinct groups of orthologs, as there

were two copies in the common ancestor of the

descendant species. The choice of this speciation

event is also related to the purpose for which the

sets of orthologs are built: for instance, if the goal

is to construct groups where all of the genes perform

the same function [3], then a more recent speciation

event is chosen. If, however, the goal is to study the

evolution of all of the descendants of a distant an-

cestral gene, then the groups necessarily contain

genes that are more divergent in sequence and func-

tion, and include more in-paralogs/co-orthologs.

Therefore, among the methods that group together

orthologs and co-orthologs, the within-group con-

sistency was also examined with respect to several

additional factors such as gene function and domain

architecture, where again OrthoMCL has been re-

ported to perform better than other methods.

Another study that assessed the feasibility of using

orthology identification to predict similar functions

among homologous genes by using functional gen-

omics data, such as gene expression and protein

interactions, has found (as one might intuitively

expect) that the less inclusive methods (that produce

smaller groups) retained a higher degree of functional

similarity within those groups [3].

More recently, a larger study has been undertaken

where again several methods were compared, this

time with respect to both phylogeny and function

(including some benchmarks from literature), and

both eukaryotes and prokaryotes were examined

[126]. One of the main, perhaps surprising results

was that the more sophisticated tree reconstruction

and reconciliation approach of EnsemblCompara

[27] was sometimes outperformed by pairwise com-

parison approaches. These findings have been corro-

borated by evaluation of the functional similarity of

predicted orthologs [using Gene Ontology (GO) an-

notations [132], enzyme classification (EC) numbers

[133], correlation of expression level in human and

mouse [134], and gene neighborhood conservation].

Another notable finding was that even a generic

BBH approach often outperformed protocols with

more complex algorithms. This, in addition to the

speed and simplicity considerations, may help explain

why many researchers prefer to use simple ad-hoc

implementations of BBH rather than more sophisti-

cated methods.

CONCLUSIONS
Identification of orthologous genes is an essential task

in comparative genomics that is complicated by

non-uniform evolutionary rates, extensive gene

duplication, gene loss and horizontal gene transfer.

The methods for inferring pairs or groups of ortho-

logs fall into two main classes, the tree-based and

heuristic best-match methods; gene synteny can

also be used to aid in ortholog identification.

Benchmarking analyses show that tree-based and

heuristic methods in practice often yield similar sets

of predicted orthologs, with the differences mostly

due to the choice of speciation event used to define

the co-orthologs/in-paralogs. The tree-based meth-

ods tend to be more specific whereas the heuristic

methods are often more sensitive. Tree-based

methods are preferable in principle as they employ

explicit models of evolution that allow the classifica-

tion of orthologs, co-orthologs, in-paralogs and

out-paralogs. However, these methods are compu-

tationally expensive, prone to artifacts of multiple

sequence alignment and phylogenetic inference,

and may not perform well in cases of horizontal

gene transfer. For large data sets, particularly in

Orthology identification 387



prokaryotes where evolution does not follow a

simple tree-like pattern, the more efficient and in-

clusive similarity-based heuristic methods are

important.

Key Point

� Orthologs are typically identified by phylogenetic analysis, a
heuristic similarity-based approach, or a combination of the
two, with synteny information helpful to improve predictions
when it is available. The tree-based approaches are the
clear choice for small sets of animal and plant species, whereas
heuristic approaches are required for datasets of thousands of
genomes and for gene families that have undergone horizontal
transfer rather than tree-like vertical descent, as is common in
prokaryotes.
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